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SUMMARY 
The slow uniform motion, after an impulsive start from relative 

rest, of a paraboloid of revolution along the axis of a rotating fluid 
is investigated by using a perturbation method. The principal 
purpose of the note is to illustrate the mechanism by which the 
fluid is not subjected to any substantial radial displacement, which 
is a direct consequence of the requirement that the circulation 
round material circuits should be constant when the perturbation 
velocities due to the motion of the paraboloid remain small. It 
appears that the mechanism is an oscillatory one in which the 
distance between any fluid particle and the axis of rotation oscillates 
sinusoidally in time with small amplitude. As time progresses, 
the amplitude of the oscillation decays to zero everywhere except 
on the paraboloid. The ultimate motion is then a rigid body 
rotation everywhere except on the paraboloid and the axis of 
rotation, where the perturbation velocities continue to oscillate 
indefinitely with small amplitude. 

1. INTRODUCTION 
The motion of bodies in a rotating fluid has been a subject for a series 

of investigations in recent years. The perturbation caused by the motion 
of a body in an inviscid fluid exhibits different characteristics according as 
the fluid is at rest at infinity or is rotating about an axis there. Thus if the 
fluid is at rest at infinity, the flow is everywhere irrotational and dependent 
only on the instantaneous velocity of the body. But if the fluid is rotating 
about an axis, the perturbation in the fluid velocity depends not only on 
the instantaneous velocity of the body but also on its past history and is 
in general neither steady nor irrotational ; and even in cases where a steady 
solution of the governing equation can be found, there is no guarantee that 
the flow can be set up by starting the body from rest relative to the rotating, 
system. For these reasons it is necessary to consider an initial-value problem 
while dealing with this type of fluid motion. 

When the body moves slowly it has been customary to use a small 
perturbation theory. Using this method Stewartson (1952, 1953) has. 
investigated the slow uniform motion, after an impulsive start from relative 
rest, of a sphere and an ellipsoid along the axis of a rotating liquid. In  both 
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these cases he found that ultimately the fluid inside the circumscribing 
cylinder C with its generators parallel to the axis of rotation is pushed along 
in front of the body as if it were solid, while outside the cylinder there is a 
shearing motion parallel to the axis of rotation. There is also a swirling 
motion about the axis inside the cylinder C. The ultimate velocity distri- 
bution in the fluid is in general steady and two-dimensional (in the sense 
that the motion is the same in all planes perpendicular to the axis of 
rotation) everywhere except on the body and on its axis, where it oscillates 
finitely. In  fact the linearized equations show that every slow and steady 
motion must also be two-dimensional. 

There is, however, an a priori difficulty with any theory which supposes 
that the perturbation remains small. Since the circulation round any 
material circular circuit concentric with the axis must remain constant, the 
radius of such a circuit must always be nearly equal to its initial radius. 
At first sight 'this restriction on the total strain of the fluid seems unlikely 
to be satisfied since it is inconsistent with any prolonged general streaming 
(however small) past the body. Nevertheless, Stewartson's (1952, 1953) 
solutions do show that the perturbation can remain small, and these solutions 
must therefore contain an explanation of the mechanism by which the 
circulation is maintained at a constant level, though Stewartson does not 
point this out. Moreover, his solution is very complicated, largely due to 
the formation of the singular surface at the cylinder C, and this rather 
obscures the mechanism of the flow. In  this note, therefore, a much simpler 
solution which does not have a surface corresponding to C is obtained, the 
primary aim being to illustrate the mechanism by which the circulation 
remains constant even when the perturbation remains small. 

The flow considered is that due to the'slow uniform motion, started 
impulsively from relative rest, of a paraboloid of revolution along the axis 
of a rotating liquid. I t  is found that the radius of any material circuit 
concentric with the axis of rotation executes small oscillations which are 
180" out of phase with the corresponding oscillations in the azimuthal 
velocity component. As time progresses, the amplitude of these oscillations 
decays to zero everywhere except on the paraboloid. The ultimate flow 
is then steady and two-dimensional everywhere except on the paraboloid 
and on the axis of rotation. On the paraboloid the velocity oscillates 
finitely and on the axis the velocity component parallel to the axis oscillates 
finitely and the other components are zero. The swirling motion about the 
axis found in the case of the sphere and ellipsoid is absent here. 

It may be pointed out that the results obtained here can be deduced 
from Stewartson's (1953) solution for an ellipsoid by carrying out the 
usual limiting process. But the procedure adopted here is found to be 
simpler. 

2. SOLUTION TO THE PROBLEM 

We choose cylindrical polar coordinates, Oz along the axis of rotation 
and (T ,  0) polar coordinates in a plane normal to Oz. Let the unperturbed 
motion of the fluid consist of a uniform angular velocity Q about the z-axis. 
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A paraboloid of revolution (whose axis of symmetry coincides with the 
z-axis) impulsively starts to move along the axis at t = 0 with uniform 
velocity V. If we choose the origin of coordinates to be in the body, we 
have in effect superposed a uniform velocity - V on the system and brought 
the body to rest. Let the components of the fluid velocity along the 
directions of increasing r ,  8, z, be u, Qr + v,  w, respectively, where u, v, w 
are small.. Then the linearized equations of motion are 

where 

I av 
+2Qu = 0, 

i a  aw 
--(ru)+ = 0, r ar 

The boundary conditions are that 
u + 0, v + 0, w + - V ,  as z + co for fixed r, t ,  (2.3) 

and, on the body, the component of the fluid velocity normal to the body 
is zero. 

As Morgan (1953) pointed out, the initial disturbance travels with 
infinite velocity and the initial motion relative to the rotating system must 
be the irrotational motion with the given boundary conditions. Taking 
the velocity potential of this irrotational flow to be 

we have at t = 0 
+(r, z) = - vz + x(r,  z), 

Now to take the Laplace transforms of u, v ,  w, and P, we put 
a3 

U = 1 e-%(r, z ,  t )  dt, etc. 
0 

Then (2.1) and (2.2) become 

t ser + 2Qii = 0, 

sw + v = - - 
i a  - az 
-- (ru) + ax = 0, r ar 

ax 9 i 
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where i;s = P-X, 
and the boundary conditions (2.3) become 

Solving (2.4) we get 
= - -- 

~2 + 4n2 ar 9 

- 

so that the continuity condition (2.5) becomes 

and the boundary condition (2.6) becomes 

If the section of the paraboloid in the (z,r)-plane is x = -aar2, the 
condition on the body is 

2aru + w = 0, or 2arii +.Lo = 0,  
or, in view of (2.7), 

2ar -7 s2 a N + @ = - v .  - 
~ 2 + 4 ~ -  at- az 

(2.10) 

So equation (2.8) is to be solved with boundary conditions (2.9) and (2.10). 
Now we can easily formulate the problem in a coordinate system in 

which (2.8) can be solved simply and in which the body is a coordinate 
surface, by taking a suitable transformation of independent variables. 
We introduce new coordinates (t, .I) defined by 

where 

On the paraboloid we have 

With the above transformation equation (2.8) becomes 
6 = to = (K/4a)"8. 

and the boundary condition (2.10) becomes 

(2.11) 

(2.12) 

(2.13) 
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The appropriate solution of (2.12) is 

and using (2.13) we get 

Now 

z= (A+Blogt)(C+Dlog7)), 

fi = - 2KV& log f .  

aR 1 alv a f l  

(2.14) 

Therefore Thus (2.14) 
is the appropriate solution. 

The results for U, 5, W follow immediately from (2.7). Finally, inverting 
these Laplace transforms, we find that the velocity components at any 
point of the fluid are given by 

-+ 0 as [ + a, in agreement with (2.9). 

1 -  

where y > 0 and 
w2 = {( 1 + ~ U Z ) ~  + 16a2r2}1/2(s2 + 4!22Z31/2(s2 + 4!22Z,2)1/2, 

1 + 4ax + 8a2r2 - 8ar(a2r2 + az)lI2 
(1 + 4 a ~ ) ~  + 16a2r2 

1 + 4ax + 8a2r2 + 8ar(a2r2 + a ~ ) l / ~  
(1 + 4 ~ 2 ) ~  + 16a2r2 

z; = , 

1; = 

(2.16) 

These results represent a complete formal solution to the problem. For 
the present purpose of ascertaining the general features of the flow, however, 
it is only necessary to consider certain special cases of the formulae (2.15). 

3. GENERAL FEATURES OF THE FLOW 

On the surface of the paraboloid the integrals (2.15) simplify considerably 
and it is possible to evaluate them in the forms 

1 + 4a2r2 ‘OS ( 1 + 4a2r2)1/2 

2 Var 2Qt 

2Var . 
(I + 4a2v2)1~2 ’ln (1 + 4a2r2)112 3 

1 + 4a2r2 ‘OS (1 + 4a2r2)112 * 

u =  

(3.1) 

2Qt 
2L2t 1 v = -  

4 Va2r2 w = -  
J 

Thus we find that the motion never becomes steady on the paraboloid. 
More important, perhaps, these results show very simply the way in which 
the circulation round circular material circuits, concentric with the axis 
of rotation and lying on the paraboloid, remains constant. Since the radial 
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velocity u oscillates sinusoidally in time, the radius of such a circuit must 
oscillate in a similar way, and the primary rotation then makes an oscillatory 
contribution to the circulation round the circuit. This must, in turn, be 
counterbalanced by an oscillatory contribution from the azimuthal pertur- 
bation velocity v ,  in accordance with (3.1). As far as the validity of the 
linearized analysis is concerned, the essential feature of this mechanism 
is that no fluid particle is displaced appreciably in a radial direction from 
its initial position. 

Similarly, on the axis of rotation we find 

(3.2) 
4 vuz 2Qt u = o ,  v = o ,  w = -  1 + 4ux cos (1 + 4ux)l/2 

Here again the oscillatory axial velocity implies that small material circuits 
surrounding the axis of rotation are never swept on to the surface of the 
paraboloid, thereby increasing their perimeter by a large factor ; an essential 
result if the azimuthal perturbation velocity is to remain small. 

From these special cases it is reasonable to infer that the same oscillatory 
mechanism is responsible for maintaining the radial positions of all fluid 
particles, and this may be verified directly when the motion is approaching 
its ultimate form. Thus, for large values of t ,  the integrals in (2.15) may 
be evaluated by inserting cuts in the s-plane from s = +2iQll and 
s = ZiQl, along lines on which the imaginary part of s is constant and the 
real part decreases. The path of integration may now be replaced by a 
path round the infinite semicircle W{s} < 0 and round the four cuts. For 
.example, the contribution from the branch point s = 2iQll to the integral 
in the first of the equations (2.15) is found to be 

for large t .  In  this way we find that 
1 - (1 + 4ux)lf 

sin(2Ql1 t - i n )  + V 
1 6 ( ~ r ) ~ / ~ ( u ~ r ~  + uz)lj4 [ 11( Qll)1/2 u - -  

1 - (1 +4ax)4 
c0s(2Q11 t - an) + V 

z' - 16(ar)3/z(u2r2 + az)l14 [ ~ ( L L Z ~ ) ~ / ~  

Thus the only significant difference here is that the amplitude of the 
oscillations decreases to zero, so that the ultimate motion is in general 
steady and two-dimensional and the axial velocity of the fluid is ultimately 
the same as that of the paraboloid. 

F.M. 2D 
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In view of the ultimate singularity in the velocity gradients on the axis 
and body it seems that the detailed form (but probably not the general 
nature) of the solution is of doubtful validity in this neighbourhood. 

In conclusion, I wish to thank Professor B. R. Seth for his kind guidance 
throughout the preparation of this paper. 
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